Aqueous Environmental Geochemistry

Environmental and Low-Temperature Geochemistry: Principles and Applications

By Peter Ryan 2014-04-21 Environmental and Low-Temperature Geochemistry presents conceptual and quantitative principles of geochemistry in order to foster understanding of natural processes at and near the earth’s surface, as well as anthropogenic impacts on the natural environment. This book provides the reader with the essentials of concentration, speciation and reactivity of elements in soils, waters, sediments and air, drawing attention to both thermodynamic and kinetic controls. Specific features include: • An introductory chapter that reviews basic chemical principles applied to environmental and low-temperature geochemistry • An explanation and analysis of the importance of the minerals in the environment • Principles of aqueous geochemistry • Organic chemistry in the environment • The role of microbes in processes such as biomineralization, elemental speciation and reduction- oxidation reactions • Thermal coverage of the fundamental processes of geochemical cycles (G, N, P, S) • Atmospheric chemistry • Soil geochemistry • The role of soluble isotopes in environmental analysis • Radioactive and radionuclide isotopes as environmental tracers and environmental contaminants • Principles and examples of instrumental analysis in environmental geochemistry The text concludes with a case study of surface water and groundwater contamination that includes interactions and reactions of naturally derived and introduced organic substances and introduced organic compounds (fuels and solvents), and illustrates the importance of interdisciplinary analysis in environmental geochemistry. Readable and accessible, this book is an ideal text for undergraduate and graduate students studying environmental geochemistry. The Geochemistry of Natural Waters: James I. Dreyer 1980 An examination of both theoretical and practical approaches to the geochemistry of natural waters. The Geochemistry of Natural Waters: James I. Dreyer 1997 An examination of both theoretical and practical approaches to the geochemistry of natural waters, the third edition focuses more on environmental issues than the previous edition, reflecting the importance on the environmental geochemistry as a result of increased environmental awareness and regulatory requirements. Preparers readers to interpret the probable cause of a particular water composition and to predict the probable geochemistry in those situations where data do not exist. Groundwater Geochemistry and Isotopes: Ian Clark 2015-04-17 Understanding the Environmental Processes that Control Groundwater Quality: The integration of environmental isotopes with geochemical studies in new recognized as a routine approach to solving problems of natural and contaminated groundwater quality. Advanced sampling and analytical methods are readily accessible and affordable, providing abundant use.

Uranium: Peter C. Burns 2018-12-17 Volume 38 of Reviews in Mineralogy provides detailed reviews of various aspects of the mineralogy of uranium. We have attempted to produce a volume that incorporates most important aspects of uranium in natural systems, while providing some insight into important applications of uranium mineralogy and geochemistry to environmental problems. The goal of this book is to provide an introduction to the basic processes that affect uranium occurrence and transport by providing sufficient background information on aqueous geochemistry and descriptive aspects of uranium-bearing rock, water, and soil. In general, the uranium-bearing systems are described in their natural state, and the problems related to uranium are considered in environmental context. Special features include: • A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry • An introduction to radionuclides and stable isotope applications and environmental geochemistry exploration. • A review of uranium geochemistry as a reference text for students and professionals who are involved in uranium exploration and environmental management.

Arsenic in Ground Water: A summary of the processes that affect arsenic occurrence and transport by providing sufficient background information on aqueous geochemistry and descriptive aspects of arsenic-bearing rock, water, and soil. In general, the arsenic-bearing systems are described in their natural state, and the problems related to arsenic are considered in environmental context. Special features include: • A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry • An introduction to radionuclides and stable isotope applications and environmental geochemistry exploration. • A review of arsenic geochemistry as a reference text for students and professionals who are involved in arsenic exploration and environmental management.

Environmental and Low-Temperature Geochemistry: Principles and Applications

By Peter Ryan 2014-04-21 Environmental and Low-Temperature Geochemistry presents conceptual and quantitative principles of geochemistry in order to foster understanding of natural processes at and near the earth’s surface, as well as anthropogenic impacts on the natural environment. This book provides the reader with the essentials of concentration, speciation and reactivity of elements in soils, waters, sediments and air, drawing attention to both thermodynamic and kinetic controls. Specific features include: • An introductory chapter that reviews basic chemical principles applied to environmental and low-temperature geochemistry • An explanation and analysis of the importance of the minerals in the environment • Principles of aqueous geochemistry • Organic chemistry in the environment • The role of microbes in processes such as biomineralization, elemental speciation and reduction- oxidation reactions • Thermal coverage of the fundamental processes of geochemical cycles (G, N, P, S) • Atmospheric chemistry • Soil geochemistry • The role of soluble isotopes in environmental analysis • Radioactive and radionuclide isotopes as environmental tracers and environmental contaminants • Principles and examples of instrumental analysis in environmental geochemistry The text concludes with a case study of surface water and groundwater contamination that includes interactions and reactions of naturally derived and introduced organic substances and introduced organic compounds (fuels and solvents), and illustrates the importance of interdisciplinary analysis in environmental geochemistry. Readable and accessible, this book is an ideal text for undergraduate and graduate students studying environmental geochemistry. The Geochemistry of Natural Waters: James I. Dreyer 1980 An examination of both theoretical and practical approaches to the geochemistry of natural waters. The Geochemistry of Natural Waters: James I. Dreyer 1997 An examination of both theoretical and practical approaches to the geochemistry of natural waters, the third edition focuses more on environmental issues than the previous edition, reflecting the importance on the environmental geochemistry as a result of increased environmental awareness and regulatory requirements. Preparers readers to interpret the probable cause of a particular water composition and to predict the probable geochemistry in those situations where data do not exist. Groundwater Geochemistry and Isotopes: Ian Clark 2015-04-17 Understanding the Environmental Processes that Control Groundwater Quality: The integration of environmental isotopes with geochemical studies in new recognized as a routine approach to solving problems of natural and contaminated groundwater quality. Advanced sampling and analytical methods are readily accessible and affordable, providing abundant use.

Uranium: Peter C. Burns 2018-12-17 Volume 38 of Reviews in Mineralogy provides detailed reviews of various aspects of the mineralogy of uranium. We have attempted to produce a volume that incorporates most important aspects of uranium in natural systems, while providing some insight into important applications of uranium mineralogy and geochemistry to environmental problems. The goal of this book is to provide an introduction to the basic processes that affect uranium occurrence and transport by providing sufficient background information on aqueous geochemistry and descriptive aspects of uranium-bearing rock, water, and soil. In general, the uranium-bearing systems are described in their natural state, and the problems related to uranium are considered in environmental context. Special features include: • A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry • An introduction to radionuclides and stable isotope applications and environmental geochemistry exploration. • A review of uranium geochemistry as a reference text for students and professionals who are involved in uranium exploration and environmental management.

Arsenic in Ground Water: A summary of the processes that affect arsenic occurrence and transport by providing sufficient background information on aqueous geochemistry and descriptive aspects of arsenic-bearing rock, water, and soil. In general, the arsenic-bearing systems are described in their natural state, and the problems related to arsenic are considered in environmental context. Special features include: • A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry • An introduction to radionuclides and stable isotope applications and environmental geochemistry exploration. • A review of arsenic geochemistry as a reference text for students and professionals who are involved in arsenic exploration and environmental management.
Chemistry of Oxides is the first book that provides a comprehensive summary of all of the critical reactions between oxides and water in a single volume. As such, it ties together a wide range of existing books and literature into a central

oxides are either prepared or must perform in aqueous environments. The volume is organized into five key sections. Part One features two introductory chapters, intended to introduce the mutual interests of engineers, chemists, geologists, environmental engineers Focuses on the practical uses of water, soil mineral and bedrock chemistry and how they impact surface and groundwater Includes applications concerning composition, quality measurement and analyses for river, groundwater and soil samples. Each part contains an overview of the theoretical background and a summary of the main findings. The book ends with a comprehensive set of appendices that cover a wide range of topics, including tables of thermodynamic data, reaction kinetics and rates, and a glossary of terms.

Applied Chemical Hydrogeology Alan E. Kehew 2001 offers an overall introduction to the field of chemical hydrogeology, useful to professionals from a wide variety of training backgrounds. Provides working professionals with an all-in-one source of reference to hydrogeologic literature. Brings together basic concepts from organic chemistry and microbiology to present a unified view of the major relationships between chemical reactions and environmental changes.

Environmental Geochemistry- Benedetto DeVito 2017-09-18 Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, Second Edition, reviews the role of geochemistry in the environment and details state-of-the-art techniques in the analysis of geochemical problems. The book begins with a comprehensive overview of the fundamental principles of geochemistry and then examines the application of these principles to the study of specific environmental problems. The book covers the fundamentals of geochemistry, the analysis of environmental samples, and the application of geochemical data to the study of environmental problems.

Mineral-Water Interface Geochemistry - Michael F. Hochella Jr. 2018-12-17 Volume 23 of Reviews in Mineralogy and Geochemistry reviews the role of mineral-water interfaces in geological processes. The book begins with an overview of the key concepts and principles of mineral-water interface geochemistry and then examines the role of these interfaces in a variety of geological processes, including mineral weathering, transport, and deposition.

Groundwater Geochemistry: Fundamentals and Applications to Contamination examines the integral role geochemistry plays in groundwater monitoring and remediation programs. The book begins with a comprehensive overview of the fundamentals of geochemistry and then examines the role of geochemistry in groundwater monitoring and remediation programs. The book covers the fundamentals of geochemistry, the analysis of groundwater samples, and the application of geochemical data to the study of groundwater problems.

Groundwater Geochemistry: Fundamentals and Applications to Contamination examines the integral role geochemistry plays in groundwater monitoring and remediation programs. The book begins with a comprehensive overview of the fundamentals of geochemistry and then examines the role of geochemistry in groundwater monitoring and remediation programs. The book covers the fundamentals of geochemistry, the analysis of groundwater samples, and the application of geochemical data to the study of groundwater problems.

Mineral-Water Interface Geochemistry - Michael F. Hochella Jr. 2018-12-17 Volume 23 of Reviews in Mineralogy and Geochemistry reviews the role of mineral-water interfaces in geological processes. The book begins with an overview of the key concepts and principles of mineral-water interface geochemistry and then examines the role of these interfaces in a variety of geological processes, including mineral weathering, transport, and deposition.

Sulfate Minerals Charles N. Alpers 2018-12-17 Volume 40 of Reviews in Mineralogy and Geochemistry reviews the role of sulfate minerals in geological processes. The book begins with an overview of the key concepts and principles of sulfate mineralogy and then examines the role of these minerals in a variety of geological processes, including hydrothermal systems, sedimentary deposits, and biological systems.

Sediments and Environmental Geochemistry- Dietrich Helz 2012-06-06 Sediments and Environmental Geochemistry is dedicated to Professor German Müller on the occasion of his 60th birthday. The individual chapters, written by outstanding scientists, cover a wide range of subjects indicating the broad spectrum of his interests. The main topics are: Carbohydrate and Euphotic Petrology, Petroleum Formation and Exploration, Environmental Geochemistry, Coal Petrography, Data Bases in Geosciences, and Volcanology.

Cold Aquifer Planetary Geochemistry- Frede S. Jørgensen 2007-12-20 Written by two of the best US researchers in the field, this text investigates issues of astrobiological relevance in the context of cold aquifer planetary geochemistry. The book begins with an overview of the key concepts and principles of cold aquifer planetary geochemistry and then examines the role of these systems in a variety of astrobiological processes, including the potential for microbial life and the formation of biogenic structures.

The book begins with an overview of the key concepts and principles of cold aquifer planetary geochemistry and then examines the role of these systems in a variety of astrobiological processes, including the potential for microbial life and the formation of biogenic structures. The book covers the fundamentals of cold aquifer planetary geochemistry, the analysis of cold aquifer samples, and the application of geochemical data to the study of cold aquifer systems.
Geochemical Modeling of Groundwater, Vadose and Geothermal Systems-Jochen Bundschuh 2011-12-23 Geochemical modeling is an important tool in environmental studies, and in the areas of subsurface and surface hydrology, pedology, water resources management, mining geology, geothermal resources, and related areas dealing with the exploration and extraction of natural resources. The book fills a gap in the literature through its discussion of geochemical modeling, which simulates the chemical and physical processes affecting the distribution of chemical species in liquid, gas, and solid phases. Geochemical modeling applies to a diversity of subsurface environments, from the vadose zone close to the Earth's surface, down to deep-seated geothermal reservoirs. This book provides the fundamental thermodynamic concepts of liquid-gas-solid phase systems. It introduces the principal types of geochemical models, such as equilibrium, reaction-path or forward, inverse- and reactive-transport models, together with examples of the most common codes and the best-practices for constructing geochemical models. The physical laws describing homogeneous and heterogeneous chemical reactions, their kinetics, and the transport of reactive solutes are presented. The partial differential or algebraic equations representing these laws, and the principal numerical methods that allow approximate solutions of these equations that can provide useful solutions to model different geochemical processes, are discussed in detail. Case studies applying geochemical models in different scientific areas and environmental settings, conclude the book. The book is addressed to students, teachers, other professionals, and to the institutions involved in water, geothermal and hydrocarbon resources, mining, and environmental management. The book should prove useful to undergraduate and graduate students, postgraduates, professional geologists and geophysicists, engineers, environmental scientists, soil scientists, hydrochemists, and others interested in water and geochemistry.

Ground-Water Microbiology and Geochemistry-Frank Chapelle 1993-02-03 The difficult struggle to protect our valuable ground-water resources necessarily involves scientists and engineers from many disciplines. To prevail in this effort, these practitioners—including microbiologists, hydrogeologists, geoscientists, and environmental engineers—must have a common understanding of essential ground-water quality issues and problems. That includes a basic grasp of how microorganisms and microbial processes affect the chemistry of ground water in both pristine and chemically stressed aquifer systems. Ground-Water Microbiology and Geochemistry marks the first attempt to bridge the historical lack of communication among these disciplines by detailing—in language that cuts across specialties—the impact of microorganisms and microbial processes on ground-water systems. To bring these diverse practitioners together, the book has been organized in three parts, with each section addressing the information needs of specific disciplines. The first six chapters of Ground-Water Microbiology and Geochemistry provide an overview of microbiology that’s geared to geoscientists who may lack formal training in the field. Here, the book systematically covers the kinds of microorganisms found in subsurface environments, focusing on their growth, metabolism, genetics, and ecology. The second part of the book, which covers four chapters, speaks both to geoscientists and to microbiologists. It offers a hydrologic perspective on how microbial processes affect ground-water geochemistry in pristine systems—an important topic for geoscientists since most ground-water reservoirs have not been chemically affected by human activities, and naturally occurring microbial processes have major impacts on water quality. At the same time, Part Two introduces microbiologists to the different classes of ground-water systems, and gives an overview of techniques for sampling subsurface environments. In addition, microbiologists gain an understanding of biogeochemical cycling in ground-water systems—in coverage that’s unique to this book—and of the classic geochemical modeling techniques that are used to study microbial processes. The final three chapters of Ground-Water Microbiology and Geochemistry focus on in microbial processes in contaminated ground-water systems—a topic of central concern to environmental scientists. In this concluding section, microbiologists see how degradation processes depend upon the hydrologic and geochemical environments within which they operate. Having achieved a basic knowledge of microbial and biochemical concepts from the earlier chapters, geoscientists are fully prepared for this treatment of microbial acclimation and the biodegradation of petroleum hydrocarbons and halogenated compounds. Ground-Water Microbiology and Geochemistry is an graphically impressive as it is far reaching. High-quality, computer-generated illustrations, of particular appeal to visually oriented geoscientists, can be found throughout the book. Equally important is the book’s unusually comprehensive bibliography, which, like the text itself, spans the relevant science and engineering disciplines. The importance of Ground-Water Microbiology and Geochemistry to geoscientists, hydrologists, and environmental scientists has been amply documented. The book should also be required reading for water planners and lawyers involved in environmental issues. It will also serve as a compelling text in upper undergraduate and graduate courses in ground-water chemistry.

Principles and Applications of Aquatic Chemistry-François M. M. Morel 1993-03-08 Presents aquatic chemistry in a way that is truly useful to those with diverse backgrounds in the sciences. Major improvements to this edition include a complete rewrite of the first three background chapters making them user-friendly. There is less emphasis on mathematics and concepts are illustrated with actual examples to facilitate understanding.

Mine Water Hydrology and Geochemistry-Paul L. Younger 2002 Related with Aqueous Environmental Geochemistry: 2315809-file
Eventually, you will unconditionally discover a other experience and completion by spending more cash, still when? attain you assume that you require to acquire those every needs once having significantly cash? Why dont you try to acquire something basic in the beginning? Thats something that will guide you to comprehend even more as regards the globe, experience, some places, later history, amusement, and a lot more?

It is your extremely own become old to show reviewing habit. among guides you could enjoy now is Aqueous Environmental Geochemistry below.